Generic Well-posedness for Perturbed Optimization Problems in Banach Spaces

نویسندگان

  • L. H. Peng
  • C. Li
  • J. C. Yao
چکیده

Let X be a Banach space and Z a relatively weakly compact subset of X. Let J : Z → R be a upper semicontinuous function bounded from above and p ≥ 1. This paper is concerned with the perturbed optimization problem of finding z0 ∈ Z such that ‖x− z0‖ + J(z0) = supz∈Z{‖x− z‖p + J(z)}, which is denoted by maxJ(x, Z). We prove in the present paper that if X is Kadec w.r.t. Z, then the set of all x ∈ X such that the problem maxJ(x, Z) is generalized well-posed is a dense Gδ-subset of X. If X is additionally J-strictly convex w.r.t. Z and p > 1, we prove that the set of all x ∈ X such that the problem maxJ(x, Z) is well-posed is a dense Gδ-subset of X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of a class of perturbed optimization problems in Banach spaces

Article history: Received 1 January 2008 Available online 27 May 2008 Submitted by B.S. Mordukhovich

متن کامل

Well-posedness for Parametric Vector Equilibrium Problems with Applications

In this paper, we study the parametric well-posedness for vector equilibrium problems and propose a generalized well-posed concept for equilibrium problems with equilibrium constraints (EPEC in short) in topological vector spaces setting. We show that under suitable conditions, the well-posedness defined by approximating solution nets is equivalent to the upper semicontinuity of the solution ma...

متن کامل

Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.

متن کامل

Porosity of perturbed optimization problems in Banach spaces ✩

Let X be a Banach space and Z a nonempty closed subset of X. Let J :Z → R be a lower semicontinuous function bounded from below. This paper is concerned with the perturbed optimization problem infz∈Z{J (z)+ ‖x − z‖}, denoted by (x, J )-inf for x ∈X. In the case when X is compactly fully 2-convex, it is proved in the present paper that the set of all points x in X for which there does not exist ...

متن کامل

Tykhonov Well-Posedness for Quasi-Equilibrium Problems

We consider an extension of the notion of Tykhonov well-posedness for perturbed vector quasi-equilibrium problems. We establish some necessary and sufficient conditions for verifying these well-posedness properties. As for applications of our results, the Tykhonov well-posedness of vector variational-like inequalities and vector optimization problems are established

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010